We consider a binary classification problem when the data comes from a mixture of two rotationally symmetric distributions satisfying concentration and anti-concentration properties enjoyed by log-concave distributions among others. We show that there exists a universal constant $C_{\mathrm{err}}>0$ such that if a pseudolabeler $\boldsymbol{\beta}_{\mathrm{pl}}$ can achieve classification error at most $C_{\mathrm{err}}$, then for any $\varepsilon>0$, an iterative self-training algorithm initialized at $\boldsymbol{\beta}_0 := \boldsymbol{\beta}_{\mathrm{pl}}$ using pseudolabels $\hat y = \mathrm{sgn}(\langle \boldsymbol{\beta}_t, \mathbf{x}\rangle)$ and using at most $\tilde O(d/\varepsilon^2)$ unlabeled examples suffices to learn the Bayes-optimal classifier up to $\varepsilon$ error, where $d$ is the ambient dimension. That is, self-training converts weak learners to strong learners using only unlabeled examples. We additionally show that by running gradient descent on the logistic loss one can obtain a pseudolabeler $\boldsymbol{\beta}_{\mathrm{pl}}$ with classification error $C_{\mathrm{err}}$ using only $O(d)$ labeled examples (i.e., independent of $\varepsilon$). Together our results imply that mixture models can be learned to within $\varepsilon$ of the Bayes-optimal accuracy using at most $O(d)$ labeled examples and $\tilde O(d/\varepsilon^2)$ unlabeled examples by way of a semi-supervised self-training algorithm.


翻译:当数据来自两个旋转对称分布的混合物时,我们就会考虑一个二进制分类问题。 当数据来自两个旋转对称分配的混合物时, 当数据来自两个旋转对称分配的混合物时, 当数据来自两个旋转对称分配的混合物时, 当数据来自两个旋转对称分配的混合物时, 当数据来自两个旋转对称分配的混合物时, 当数据来自两个旋转对称分配的混合物时, 当数据来自两个旋转对称分配的混合物时, 当数据来自两个旋转对称分配的混合物的混合物的混合物, 当数据来自两个旋转对称分配的混合物的混合物的混合物, 当数据来自对正对称分配的浓度和反集中特性时, 当假标签的标签是 $\ mathrm{er{er\\\\\\ er\ 美元=0, 当一个伪标签的标签能实现分类的分类错误时, 只能通过最多 $\\ dlaliscial=lation$( 美元) 没有标签的自动计算结果, 当我们用一个硬的变的货币变的货币的货币的变数 。

1
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
已删除
将门创投
4+阅读 · 2020年6月12日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月8日
Arxiv
0+阅读 · 2021年8月25日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
7+阅读 · 2020年10月9日
Paraphrase Generation with Deep Reinforcement Learning
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
相关资讯
已删除
将门创投
4+阅读 · 2020年6月12日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员