We study a family of reachability problems under waiting-time restrictions in temporal and vertex-colored temporal graphs. Given a temporal graph and a set of source vertices, we find the set of vertices that are reachable from a source via a time-respecting path, where the difference in timestamps between consecutive edges is at most a resting time. Given a vertex-colored temporal graph and a multiset query of colors, we find the set of vertices reachable from a source via a time-respecting path such that the vertex colors of the path agree with the multiset query and the difference in timestamps between consecutive edges is at most a resting time. These kind of problems have several applications in understanding the spread of a disease in a network, tracing contacts in epidemic outbreaks, finding signaling pathways in the brain network, and recommending tours for tourists. We present an algebraic algorithmic framework based on constrained multilinear sieving for solving the restless reachability problems we propose. In particular, parameterized by the length of a path $k$ sought, we show the problems can be solved in $O(2^k k m \Delta)$ time and $O(n \tau)$ space, where $n$ is the number of vertices, $m$ the number of edges, $\Delta$ the maximum resting time and $\tau$ the maximum timestamp of an input temporal graph. In addition, we prove that the algorithms presented for the restless reachability problems in vertex-colored temporal graphs are optimal under plausible complexity-theoretic assumptions. Finally, with an open-source implementation, we demonstrate that our algorithm scales to large graphs with up to one billion temporal edges, despite the problems being NP-hard. Specifically, we present extensive experiments to evaluate our scalability claims both on synthetic and real-world graphs.
翻译:在时间和顶端颜色的时间图中,我们研究在等待时间限制下的各种可达性问题。根据一个时间图和一组源脊柱,我们发现一系列可以通过时间尊重路径从源头中达到的顶端。在这种情况下,连续边缘之间的时间印数差异最多是一个休息时间。鉴于一个顶端颜色的时速图和一个多位颜色的查询,我们发现一组悬崖可以通过一个符合时间的路径从源头中达到。在时间图中,路径的顶端颜色与多位点查询和连续边缘之间的时间戳差异最为一致。这些问题在理解网络疾病蔓延、追踪流行病爆发中的接触、在大脑网络中寻找信号路径,以及向游客推荐旅行。我们呈现一个基于多线直到一个不留数的直径直径框架,我们提出的一个不留数的直径直径直径直径问题,特别是用一个直径直的直径直路徑来计算,在美元平面边缘端之间的时间点差差异最多是。我们发现一个直径直的直径直值的直径直值的直径直值,而直径直径直值的直到直径直到直径直径直径直值的直值的直的直值的直的直到直值的直到直到直值。我们所处的直到直到直到直到直的直到直到直到直位位位位位位位数。