Alzheimer's disease (AD) is a serious neurodegenerative disease consisting of four stages where the illness gets progressively worse. It is of great significance to detect the gene regulatory mechanism as AD progresses and, thus, to help us better understand the causes of AD and find ways to treat or control AD. There are numerous researches to conduct this kind of study. However, the majority of methods are processing region by region of brain, stage by stage of AD, and then compare the results to detect changes. It is unclear how to combine these three dimensions, i.e., gene, region and stage, simultaneously to study gene expression dynamics of AD. This is the motivation of our research. In our study, we propose a statistical model of increments to clarify the relationship between gene expression in adjacent stages, so that we could better estimate the missing data we want and obtain a complete reasonable dynamic regulatory network model. Simulations are conducted to validate the statistical power of our algorithm. Moreover, a real data analysis shows that our method can capture the dynamic gene regulatory relationships among this complex brain data.
翻译:阿尔茨海默氏病(AD)是一种严重的神经退化性疾病,由疾病逐渐恶化的四个阶段组成。随着AD的发展,检测基因调节机制非常重要,因此,帮助我们更好地理解AD的原因,并找到治疗或控制AD的方法。 有许多研究可以进行这种研究。 然而,大多数方法都是按大脑区域,按AD阶段处理区域,然后比较结果以检测变化。 不清楚如何将这三个层面(即基因、区域和阶段)结合起来,同时研究AD的基因表达动态。这是我们研究的动力。我们在研究中提出了一个递增的统计模型,以澄清相邻阶段的基因表达之间的关系,从而使我们能够更好地估计所缺的数据,并获得一个完全合理的动态管理网络模型。 模拟是为了验证我们的算法的统计能力。 此外,一个真正的数据分析表明,我们的方法可以捕捉到这个复杂的大脑数据之间的动态基因调节关系。</s>