As the first session-level Chinese dataset, CHASE contains two separate parts, i.e., 2,003 sessions manually constructed from scratch (CHASE-C), and 3,456 sessions translated from English SParC (CHASE-T). We find the two parts are highly discrepant and incompatible as training and evaluation data. In this work, we present SeSQL, yet another large-scale session-level text-to-SQL dataset in Chinese, consisting of 5,028 sessions all manually constructed from scratch. In order to guarantee data quality, we adopt an iterative annotation workflow to facilitate intense and in-time review of previous-round natural language (NL) questions and SQL queries. Moreover, by completing all context-dependent NL questions, we obtain 27,012 context-independent question/SQL pairs, allowing SeSQL to be used as the largest dataset for single-round multi-DB text-to-SQL parsing. We conduct benchmark session-level text-to-SQL parsing experiments on SeSQL by employing three competitive session-level parsers, and present detailed analysis.
翻译:作为第一届中国会议级数据集,中国计算机系统包含两个单独的部分,即2 003次从零开始手工构建(CHASE-C),3 456次从英国SParC(CHASE-T)翻译。我们发现这两个部分在培训和评估数据方面差异很大,互不兼容。在这项工作中,我们以中文提供SESQL,这是又一个大型的会议级文本到SQL数据集,由5 028次从零开始手工构建。为了保证数据质量,我们采用了迭接式的批注工作流程,以便利对前一轮自然语言(NL)问题和SQL查询进行密集和实时审查。此外,通过完成所有基于背景的NL问题,我们获得了27 012个基于背景的问题/SQL对配对,使SSQL成为单轮多D文本到SQL分类的最大数据集。我们通过使用3个竞争性的届会级分析、目前的详细分析,对SSSQL进行标准会议级到SQL的文本到SQL等级分解实验。