The task of generating a database query from a question in natural language suffers from ambiguity and insufficiently precise description of the goal. The problem is amplified when the system needs to generalize to databases unseen at training. In this paper, we consider the case when, at the test time, the system has access to an external criterion that evaluates the generated queries. The criterion can vary from checking that a query executes without errors to verifying the query on a set of tests. In this setting, we augment neural autoregressive models with a search algorithm that looks for a query satisfying the criterion. We apply our approach to the state-of-the-art semantic parsers and report that it allows us to find many queries passing all the tests on different datasets.
翻译:从自然语言的问题中产生数据库查询的任务有模糊不清之处,对目标的描述不够精确。当系统需要向培训时看不见的数据库进行概括时,问题就会更加严重。在本文中,我们考虑了当系统在测试时能够使用外部标准来评价生成的查询时的情况。标准可以是检查查询是否无差错,也可以是对一组测试的查询进行核实。在这个环境中,我们用一种搜索算法来增强神经自动递减模型,以寻找符合标准的查询。我们对最先进的语义解析器应用了我们的方法,并报告它允许我们在不同的数据集中找到通过所有测试的许多查询。