Increasing the number of degrees of freedom of robotic systems makes them more versatile and flexible. This usually renders the system kinematically redundant: the main manipulation or interaction task does not fully determine its joint maneuvers. Additional constraints or objectives are required to solve the under-determined control and planning problems. The state-of-the-art approaches arrange tasks in a hierarchy and decouple lower from higher priority tasks on velocity or torque level using projectors. We develop an approach to redundancy resolution and decoupling on position level by determining subspaces of the configurations space that are independent of the task. We call them orthogonal foliations because they are, in a certain sense, orthogonal to the task self-motion manifolds. The approach provides a better insight into the topological properties of robot kinematics and control problems, allowing a global view. A condition for the existence of orthogonal foliations is derived. If the condition is not satisfied, we will still find approximate solutions by numerical optimization. Coordinates can be defined on these orthogonal foliations and can be used as additional task variables for control. We show in simulations that we can control the system without the need for projectors using these coordinates; and we validate the approach experimentally on a 7-DoF robot.
翻译:增加机械手臂的自由度可以使其更加灵活和多功能。这通常会导致机械手臂在运动中没有完全确定的关节动作,即其运动学存在冗余性。为了解决这种欠定的控制和规划问题,我们需要额外的约束或目标。目前的最先进方法是在速度或扭矩水平上通过投影器将较低和较高优先级的任务分开。我们开发了一种在位置水平上解决冗余性和解耦的方法,通过确定与任务无关的配置空间子空间来实现。我们称其为正交分叉,因为它们在某种程度上与任务自身运动流形正交。该方法提供了对机器人运动学和控制问题拓扑特性的更好洞察,允许进行全局视图。导出了正交分叉的存在条件。如果不满足条件,我们仍然可以通过数值优化找到近似解。可以在这些正交分叉上定义坐标,并将其用作控制的附加任务变量。我们在模拟中展示了可以使用这些坐标来控制机械臂而无需投影器的情况,并在具有7个自由度的机械臂上进行了实验验证。