We present our deep learning framework to solve and accelerate the Time-Dependent partial differential equation's solution of one and two spatial dimensions. We demonstrate DiffusionNet solver by solving the 2D transient heat conduction problem with Dirichlet boundary conditions. The model is trained on solution data calculated using the Alternating direction implicit method. We show the model's ability to predict the solution from any combination of seven variables: the starting time step of the solution, initial condition, four boundary conditions, and a combined variable of the time step size, diffusivity constant, and grid step size. To improve speed, we exploit our model capability to predict the solution of the Time-dependent PDE after multiple time steps at once to improve the speed of solution by dividing the solution into parallelizable chunks. We try to build a flexible architecture capable of solving a wide range of partial differential equations with minimal changes. We demonstrate our model flexibility by applying our model with the same network architecture used to solve the transient heat conduction to solve the Inviscid Burgers equation and Steady-state heat conduction, then compare our model performance against related studies. We show that our model reduces the error of the solution for the investigated problems.
翻译:我们展示了解决和加速时间依赖部分差异方程式一个和两个空间维度解决方案的深层次学习框架。 我们通过在迪里赫莱特边界条件中解决二维瞬时热导问题展示了DifuntNet求解器。 模型在使用交替方向隐含法计算解决方案数据方面受过培训。 我们展示了模型从任何七种变量组合中预测解决方案的能力: 解决方案的起始时间步骤、 初始条件、 四条边界条件, 以及时间步数、 diffusity 常数和电网阶大小的组合变量。 为了提高速度, 我们利用模型能力在多次步骤后预测基于时间的 PDE 解决方案的解决方案。 我们试图建立一个灵活的架构, 能够解决范围广泛的局部差异方程式, 并进行最小的修改。 我们展示了我们的模型灵活性, 将我们的模型与用于解决瞬时段控波尔格方程式和稳态热控件等式的模型用于解决问题, 然后将模型的性能与相关研究进行比较。 我们展示了模型的错误。