In this paper we consider a coupled bulk-surface PDE in two space dimensions. The model consists of a PDE in the bulk that is coupled to another PDE on the surface through general nonlinear boundary conditions. For such a system we propose a novel method, based on coupling a virtual element method [Beir\~ao da Veiga et al., 2013] in the bulk domain to a surface finite element method [Dziuk & Elliott, 2013] on the surface. The proposed method, which we coin the Bulk-Surface Virtual Element Method (BSVEM) includes, as a special case, the bulk-surface finite element method (BSFEM) on triangular meshes [Madzvamuse & Chung, 2016]. The method exhibits second-order convergence in space, provided the exact solution is $H^{2+1/4}$ in the bulk and $H^2$ on the surface, where the additional $\frac{1}{4}$ is required only in the simultaneous presence of surface curvature and non-triangular elements. Two novel techniques introduced in our analysis are (i) an $L^2$-preserving inverse trace operator for the analysis of boundary conditions and (ii) the Sobolev extension as a replacement of the lifting operator [Elliott & Ranner, 2013] for sufficiently smooth exact solutions. The generality of the polygonal mesh can be exploited to optimize the computational time of matrix assembly. The method takes an optimised matrix-vector form that also simplifies the known special case of BSFEM on triangular meshes [Madzvamuse & Chung, 2016]. Three numerical examples illustrate our findings.
翻译:在本文中,我们在两个空间维度中考虑的是组合体表面的 PDE 。 模型包括一个组合体中的 PDE, 通过一般的非线性边界条件, 与表层上的另一个 PDE 相伴。 对于这样一个系统, 我们提出一种新的方法, 其基础部分将虚拟元素方法[Beir ⁇ ao da Veiga等人, 2013] 合并成表面限量元素方法[Dziuk & Elliott, 2013] 。 提议的方法, 我们将散地表面的组合体表面PDE 结合成一个组合体- 软体虚拟元素方法(BSVEM ), 作为一种特殊的例子, 包括: 组合体表面定值定值元素方法(BSFEMEMEMmuse & Chung, 2016) 。 方法展示了空间的二阶级组合, 提供精确的解决方案是 $H+2+4/4美元, 表面的 $H%2, 额外的基质化矩阵, 仅需要同时存在表层曲线曲线曲线和非三角组的矩阵矩阵矩阵 。 在我们分析中引入的轨变的模型分析中, 。