This paper investigates the stochastic distributed nonconvex optimization problem of minimizing a global cost function formed by the summation of $n$ local cost functions. We solve such a problem by involving zeroth-order (ZO) information exchange. In this paper, we propose a ZO distributed primal-dual coordinate method (ZODIAC) to solve the stochastic optimization problem. Agents approximate their own local stochastic ZO oracle along with coordinates with an adaptive smoothing parameter. We show that the proposed algorithm achieves the convergence rate of $\mathcal{O}(\sqrt{p}/\sqrt{T})$ for general nonconvex cost functions. We demonstrate the efficiency of proposed algorithms through a numerical example in comparison with the existing state-of-the-art centralized and distributed ZO algorithms.


翻译:本文调查了将本地成本功能加起来产生的全球成本功能最小化的非碳化物分配非碳化物优化问题。 我们通过零序(ZO)信息交流解决了这一问题。 在本文中, 我们提议了ZO分配的原始- 双协调法(ZODIAC)以解决蒸馏物优化问题。 代理人接近他们自己的本地蒸馏物分配ZO Ooracle, 加上一个适应性平滑参数的坐标。 我们显示, 提议的算法实现了一般非碳化成本功能的美元( mathcal{O} (\\ sqrt{p}/\ qrt{T}) 的趋同率。 我们通过一个数字示例, 与现有的最新集中和分布的 ZO 算法相比, 我们展示了拟议算法的效率。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
VIP会员
Top
微信扫码咨询专知VIP会员