Bayesian workflows often require the introduction of nuisance parameters, yet for core science modelling one needs access to a marginal posterior density. In this work we use masked autoregressive flows and kernel density estimators to encapsulate the marginal posterior, allowing us to compute marginal Kullback-Leibler divergences and marginal Bayesian model dimensionalities in addition to generating samples and computing marginal log probabilities. We demonstrate this in application to topical cosmological examples of the Dark Energy Survey, and global 21cm signal experiments. In addition to the computation of marginal Bayesian statistics, this work is important for further applications in Bayesian experimental design, complex prior modelling and likelihood emulation. This technique is made publicly available in the pip-installable code margarine.
翻译:贝叶斯工作流程通常需要引入骚扰参数,然而核心科学建模则需要使用边际后方密度。 在这项工作中,我们使用隐性自动递减流和内核密度估计器封装边际后端生物,使我们能够计算边际库尔背-利贝尔模型差异和边际贝叶斯模型维度,并生成样本和计算边际日志概率。我们在应用暗能量调查的时空实例和全球21厘米信号实验中证明了这一点。除了计算边际巴伊斯统计外,这项工作对于进一步应用贝伊斯实验设计、复杂的先前建模和可能性模拟非常重要。这一技术在可安装的可视代码人造胶中公开提供。