We adapt the classical definition of locally stationary processes in discrete-time to the continuous-time setting and obtain equivalent representations in the time and frequency domain. From this, a unique time-varying spectral density is derived using the Wigner-Ville spectrum. As an example, we investigate time-varying L\'evy-driven state space processes, including the class of time-varying L\'evy-driven CARMA processes. First, the connection between these two classes of processes is examined. Considering a sequence of time-varying L\'evy-driven state space processes, we then give sufficient conditions on the coefficient functions that ensure local stationarity with respect to the given definition.
翻译:我们调整了离散时间当地固定过程的传统定义,使之适应连续时间设置,并在时间和频率域中获得等同的表示。 从这一点,利用Wigner-Ville频谱得出了独特的时间变化光谱密度。举例来说,我们调查时间变化L\'evy驱动的状态空间过程,包括时间变化L\'evy驱动的CARMA进程。首先,对这两类过程之间的联系进行了研究。考虑到时间变化L\'evy驱动的国家空间过程的顺序,我们随后对确保特定定义的当地静止的系数功能规定了充分的条件。