Preference elicitation is a major challenge in large combinatorial auctions because the bundle space grows exponentially in the number of items. Recent work has used machine learning (ML) algorithms to identify a small set of bundles to query from each bidder. However, a shortcoming of this prior work is that bidders must submit exact values for the queried bundles, which can be quite costly. To address this, we propose iMLCA, a new ML-powered iterative combinatorial auction with interval bidding (i.e., where bidders submit upper and lower bounds instead of exact values). To steer the auction towards an efficient allocation, we introduce a price-based activity rule, asking bidders to tighten bounds on relevant bundles only. In our experiments, iMLCA achieves the same allocative efficiency as the prior ML-based auction that uses exact bidding. Moreover, it outperforms the well-known combinatorial clock auction in a realistically-sized domain.
翻译:由于捆绑空间在项目数量上成倍增长,因此在大型组合式拍卖中,首选引价是一大挑战。最近的工作使用了机器学习算法(ML)来识别每个投标人询问的少量捆包。然而,先前工作的缺点是,投标人必须提交询问捆包的确切价值,这可能会非常昂贵。为了解决这个问题,我们提议进行iMLCA,这是一个新的由MLLL授权的迭接组合式拍卖,配有间隙投标(即投标人提交上下限而不是准确值)。为了将拍卖引向有效的分配,我们引入了基于价格的活动规则,要求投标人只收紧相关捆包的界限。在我们的实验中,iMLLCA实现了与以前使用精确投标的以ML为基础的拍卖相同的配价效率。此外,它超过了在现实规模范围内进行众所周知的组合时钟拍卖。