We consider the sequential allocation of $m$ balls (jobs) into $n$ bins (servers) by allowing each ball to choose from some bins sampled uniformly at random. The goal is to maintain a small gap between the maximum load and the average load. In this paper, we present a general framework that allows us to analyze various allocation processes that slightly prefer allocating into underloaded, as opposed to overloaded bins. Our analysis covers several natural instances of processes, including: The Caching process (a.k.a. memory protocol) as studied by Mitzenmacher, Prabhakar and Shah (2002): At each round we only take one bin sample, but we also have access to a cache in which the most recently used bin is stored. We place the ball into the least loaded of the two. The Packing process: At each round we only take one bin sample. If the load is below some threshold (e.g., the average load), then we place as many balls until the threshold is reached; otherwise, we place only one ball. The Twinning process: At each round, we only take one bin sample. If the load is below some threshold, then we place two balls; otherwise, we place only one ball. The Thinning process as recently studied by Feldheim and Gurel-Gurevich (2021): At each round, we first take one bin sample. If its load is below some threshold, we place one ball; otherwise, we place one ball into a $\textit{second}$ bin sample. As we demonstrate, our general framework implies for all these processes a gap of $\mathcal{O}(\log n)$ between the maximum load and average load, even when an arbitrary number of balls $m \geq n$ are allocated (heavily loaded case). Our analysis is inspired by a previous work of Peres, Talwar and Wieder (2010) for the $(1+\beta)$-process, however here we rely on the interplay between different potential functions to prove stabilization.


翻译:我们考虑将美元球( jobs) 依次分配到 $ bins (servers) 。 我们考虑将美元球( jobs) 分配到 $ bins (servers), 方法是允许每个球从某些垃圾桶中任意选择一个样本。 目标是在最大负载和平均负载之间保持一个小的间隔。 在本文中, 我们提出了一个总框架, 以便分析各种分配过程, 相对过量的垃圾桶进行分配。 我们的分析覆盖了几个过程的自然实例, 包括 Mitzenmacher、 Prabakar 和 Shah (2002年) 所研究的 Caching 进程( a. k. a. k. a. a. delim. remedimeals 协议 协议 ) : 在每一回合中, 我们只选取一个 bin 样, 我们只能选取一个 bin 样 。 如果最近将球放入一个 O 直径, 直径 直径, 直径直径直径直径直径, 。 ( 直径直径, 直径直径 直径直径直 直径直径直 。 。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月17日
Arxiv
0+阅读 · 2021年12月17日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年12月17日
Arxiv
0+阅读 · 2021年12月17日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员