This article deals with the convergence of finite volume scheme (FVS) for solving coagulation and multiple fragmentation equations having locally bounded coagulation kernel but singularity near the origin due to fragmentation rates. Thanks to the Dunford-Pettis and De La Vall$\acute{e}$e-Poussin theorems which allow us to have the convergence of numerically truncated solution towards a weak solution of the continuous model using a weak $L^1$ compactness argument. A suitable stable condition on time step is taken to achieve the result. Furthermore, when kernels are in $W^{1,\infty}_{loc}$ space, first order error approximation is demonstrated for a uniform mesh. It is numerically validated by attempting several test problems.


翻译:本条涉及有限体积计划(FVS)的趋同,以解决与当地结合的凝固内核和多分解方程式,这些内核因碎裂率而离原点很近。由于Dunford-Pettis和De La Vall$\acute{e}e-Poussin 理论,我们得以在数字上找到支离破碎的解决方案,以弱力的压紧性参数解决连续模型的薄弱问题。为了取得结果,在时间上采取了一个适当的稳定条件。此外,当内核在$W1,\infty ⁇ loc}空间时,对统一的内核表示第一阶差近。它通过尝试几个测试问题而得到数字上的验证。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员