Accurate and efficient uncertainty estimation is crucial to build reliable Machine Learning (ML) models capable to provide calibrated uncertainty estimates, generalize and detect Out-Of-Distribution (OOD) datasets. To this end, Deterministic Uncertainty Methods (DUMs) is a promising model family capable to perform uncertainty estimation in a single forward pass. This work investigates important design choices in DUMs: (1) we show that training schemes decoupling the core architecture and the uncertainty head schemes can significantly improve uncertainty performances. (2) we demonstrate that the core architecture expressiveness is crucial for uncertainty performance and that additional architecture constraints to avoid feature collapse can deteriorate the trade-off between OOD generalization and detection. (3) Contrary to other Bayesian models, we show that the prior defined by DUMs do not have a strong effect on the final performances.
翻译:准确而高效的不确定性估计对于建立可靠的机器学习模型至关重要,这种模型能够提供校准的不确定性估计、概括和探测流出分布(OOOD)数据集。为此,确定性不确定性方法(DUM)是一个很有希望的模范家庭,能够在一次远征中进行不确定性估计。这项工作调查了DUMs的重要设计选择:(1) 我们表明,将核心结构与不确定性头计划脱钩的培训计划可以大大改善不确定性的性能。(2) 我们表明,核心结构的清晰度对于不确定性的性能至关重要,避免特征崩溃的额外结构制约可能使OOD一般化与探测之间的平衡恶化。(3) 与其他巴伊斯模式相反,我们表明,DUMs界定的先前对最终性能没有强烈的影响。</s>