Discontinuous Galerkin (dG) methods on meshes consisting of polygonal/polyhedral (henceforth, collectively termed as \emph{polytopic}) elements have received considerable attention in recent years. Due to the physical frame basis functions used typically and the quadrature challenges involved, the matrix-assembly step for these methods is often computationally cumbersome. To address this important practical issue, this work proposes two parallel assembly implementation algorithms on CUDA-enabled graphics cards for the interior penalty dG method on polytopic meshes for various classes of linear PDE problems. We are concerned with both single GPU parallelization, as well as with implementation on distributed GPU nodes. The results included showcase almost linear scalability of the quadrature step with respect to the number of GPU-cores used since no communication is needed for the assembly step. In turn, this can justify the claim that polytopic dG methods can be implemented extremely efficiently, as any assembly computing time overhead compared to finite elements on `standard' simplicial or box-type meshes can be effectively circumvented by the proposed algorithms.


翻译:Galerkin (dG) 方法在介质上不连续的 Galerkin (dG) 方法, 包括多边形/ 波利希德( 其后统称为 emph{ polydicolate) 元素) 元素, 近些年来受到相当重视。 由于通常使用的物理框架基函数以及涉及的二次曲线挑战, 这些方法的矩阵组装步骤往往在计算上很麻烦。 为了解决这一重要的实际问题, 这项工作提出了两种平行的组装算法, 在 CUDA 驱动的图形卡上, 两种平行的组装算法, 用于对各种线性 PDE 问题的多位形间隔板的内部 DG 方法 。 我们既关注单一的 GPU 平行化, 也关注分布式 GPU 节点的实施 。 其结果包括显示四极阶梯步的几乎线性缩放缩放缩放, 因为组件不需要任何通信来进行组装。 反过来, 这可以证明 多位 dG 方法可以非常高效地应用, 因为任何组装高时压都可以通过拟议的算法有效绕过“ ” 。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
122+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
122+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员