The Virtual Element Method is well suited to the formulation of arbitrarily regular Galerkin approximations of elliptic partial differential equations of order $2p_1$, for any integer $p_1\geq 1$. In fact, the virtual element paradigm provides a very effective design framework for conforming, finite dimensional subspaces of $H^{p_2}(\Omega)$, $\Omega$ being the computational domain and $p_2\geq p_1$ another suitable integer number. In this study, we first present an abstract setting for such highly regular approximations and discuss the mathematical details of how we can build conforming approximation spaces with a global high-order continuity on $\Omega$. Then, we illustrate specific examples in the case of second- and fourth-order partial differential equations, that correspond to the cases $p_1=1$ and $2$, respectively. Finally, we investigate numerically the effect on the approximation properties of the conforming highly-regular method that results from different choices of the degree of continuity of the underlying virtual element spaces and how different stabilization strategies may impact on convergence.
翻译:虚拟元素方法非常适合任意地对2p_1美元等离子部分差分方程式进行Galerkin常规近似值为2p_1美元,任何整数为$p_1\geq 1美元。事实上,虚拟元素范式为符合的有限维次空间提供了非常有效的设计框架,即$H ⁇ p_2}(Omega)美元,$\Omega$是计算域,$p_2\geq p_1美元是另一个合适的整数。在本研究中,我们首先为这种高度定期近差方程提供一个抽象的设置,并讨论我们如何建立符合全球高端连续状态的近似空间的数学细节。然后,我们用二等和四等分级部分差方程式分别对应的1美元=1美元和2美元。最后,我们用数字来调查由于对基本虚拟元素空间的连续性程度的不同选择而导致的符合高常态方法对近似特性的影响,以及不同的稳定战略如何影响趋同性。