Social recommendations utilize social relations to enhance the representation learning for recommendations. Most social recommendation models unify user representations for the user-item interactions (collaborative domain) and social relations (social domain). However, such an approach may fail to model the users heterogeneous behavior patterns in two domains, impairing the expressiveness of user representations. In this work, to address such limitation, we propose a novel Disentangled contrastive learning framework for social Recommendations DcRec. More specifically, we propose to learn disentangled users representations from the item and social domains. Moreover, disentangled contrastive learning is designed to perform knowledge transfer between disentangled users representations for social recommendations. Comprehensive experiments on various real-world datasets demonstrate the superiority of our proposed model.
翻译:社会建议利用社会关系加强建议代表学习; 大多数社会建议模式将用户在用户-项目互动(协作领域)和社会关系(社会领域)中的代表性统一起来;然而,这种方法可能无法在两个领域对用户的不同行为模式进行模型分析,从而损害用户代表的清晰度。在这项工作中,为了解决这种局限性,我们提议为社会建议DcRec建立一个新颖的、分解的、对比鲜明的学习框架。更具体地说,我们提议学习与项目和社会领域分解的用户代表关系。此外,相互对立的学习旨在将知识用于分解的用户代表之间的知识转移,用于社会建议。关于各种现实世界数据集的全面实验显示了我们拟议模式的优越性。