Computed tomography (CT) can capture volumes large enough to measure a statistically meaningful number of micron-sized particles with a sufficiently good resolution to allow for the analysis of individual particles. However, the development of methods to efficiently investigate such image data and interpretably model the observed particle features is still an active field of research. When image data of particles exhibiting a wide range of shapes and sizes is considered, traditional image segmentation methods, such as the classic watershed algorithm, struggle to recognize particles with satisfying accuracy. Thus, more advanced methods of machine learning must be utilized for image segmentation to improve the validity of subsequent analyzes. Moreover, CT data does not include information about the mineralogical composition of particles and, therefore, additional SEM-EDS image data has to be acquired. In this paper, micro-CT image data of a particle system mostly consisting of zinnwaldite-quartz composites is considered. First, an image segmentation method is applied which uses deep convolutional neural networks, in particular an adaptation of the U-net architecture. This has the advantage of requiring less hand-labeling than other machine learning methods, while also being more flexible with the possibility of transfer learning. Then, fully parameterized models based on vine copulas are designed to determine multivariate probability distributions of descriptor vectors for the size, shape, texture and composition of particles -- allowing for the estimation and interpretable characterization of interdependencies between particle descriptors. For model fitting, the segmented three-dimensional CT data and co-registered two-dimensional SEM-EDS data are used.


翻译:计算成映像仪(CT)能够捕捉到足够大的数量,足以测量具有统计意义的微小粒子数量,并有足够的清晰度来分析个别粒子。然而,开发高效调查这类图像数据和可解释地模拟所观测粒子特征的方法仍然是一个活跃的研究领域。当考虑显示多种形状和大小的粒子图像数据时,将考虑传统的图像分割方法,如典型的流域算法,努力以令人满意的准确度来辨别粒子。因此,必须使用更先进的机器学习方法来测量图像分解,以提高随后分析的有效性。此外,CT数据并不包括关于粒子的矿质构成的信息,因此,还需要开发更多的SEM-EDS图像数据模型。在本文中,主要由松散石-夸尔茨合成合成合成材料组成的微粒子系统微型-CT图像分割数据。首先,采用图像分解方法,利用深变异性神经网络,特别是U-net结构的调整。这具有以下优点,即要求更低手贴式的定义的粒子剖面结构结构,而比其他的SEM-E-E-delialdealdeal 数据流流流流流流流流流流流流流流流流流流数据要更灵活地用于后,同时学习模型的模型的模型的分解数据,同时使用更灵活地分解的分解结构。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
专知会员服务
158+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
0+阅读 · 2023年3月10日
Arxiv
0+阅读 · 2023年3月9日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
专知会员服务
158+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员