The main purpose of this paper is to design a local discontinuous Galerkin (LDG) method for the Benjamin-Ono equation. We analyze the stability and error estimates for the semi-discrete LDG scheme. We prove that the scheme is $L^2$-stable and it converges at a rate $\mathcal{O}(h^{k+1/2})$ for general nonlinear flux. Furthermore, we develop a fully discrete LDG scheme using the four-stage fourth order Runge-Kutta method and ensure the devised scheme is strongly stable in case of linear flux using two-step and three-step stability approach under an appropriate time step constraint. Numerical examples are provided to validate the efficiency and accuracy of the method.
翻译:暂无翻译