Relative localization is an important ability for multiple robots to perform cooperative tasks in GPS-denied environment. This paper presents a novel autonomous positioning framework for monocular relative localization of multiple tiny flying robots. This approach does not require any groundtruth data from external systems or manual labelling. Instead, the proposed framework is able to label real-world images with 3D relative positions between robots based on another onboard relative estimation technology, using ultra-wide band (UWB). After training in this self-supervised manner, the proposed deep neural network (DNN) can predict relative positions of peer robots by purely using a monocular camera. This deep learning-based visual relative localization is scalable, distributed and autonomous. We also built an open-source and light-weight simulation pipeline by using Blender for 3D rendering, which allows synthetic image generation of other robots, and generalized training of the neural network. The proposed localization framework is tested on two real-world Crazyflie2 quadrotors by running the DNN on the onboard AIdeck (a tiny AI chip and monocular camera). All results demonstrate the effectiveness of the self-supervised multi-robot localization method.


翻译:相对本地化是多个机器人在GPS封闭环境中执行合作任务的重要能力。 本文为多个小型飞行机器人的单子相对本地化提供了一个全新的自主定位框架。 这种方法不需要外部系统或人工标签的任何地面真实数据。 相反, 拟议的框架能够使用超广域带( UNWB) 将基于另一机体相对估计技术的机器人之间的真实世界图像与3D相对位置贴上标签, 并使用超广域图( UNWB) 。 在以这种自我监督的方式进行培训后, 拟议的深神经网络( DNN) 能够纯粹使用单子相机来预测同行机器人的相对位置。 这种深层次的基于学习的相对本地化是可缩放、 分布和自主的。 我们还建立了开放源和轻度模拟管道, 使用 Blender 3D 投影, 允许合成其他机器人的图像生成, 对神经网络进行普遍培训。 拟议的本地化框架在两个真实世界的Crazflie2 Quadrotortors 上进行测试, 通过在 AIdeck 板板上运行 DNNNN( 一个小AIsticet 和单子相机) 的本地化相机来测试。 所有结果都展示了自超强方法。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Arxiv
25+阅读 · 2021年3月20日
Monocular Plan View Networks for Autonomous Driving
Arxiv
6+阅读 · 2019年5月16日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Top
微信扫码咨询专知VIP会员