Communication efficiency plays an important role in accelerating the distributed training of Deep Neural Networks (DNN). All-reduce is the crucial communication primitive to reduce model parameters in distributed DNN training. Most existing all-reduce algorithms are designed for traditional electrical interconnect systems, which cannot meet the communication requirements for distributed training of large DNNs due to the low data bandwidth of the electrical interconnect systems. One of the promising alternatives for electrical interconnect is optical interconnect, which can provide high bandwidth, low transmission delay, and low power cost. We propose an efficient scheme called WRHT (Wavelength Reused Hierarchical Tree) for implementing all-reduce operation in optical interconnect systems. WRHT can take advantage of WDM (Wavelength Division Multiplexing) to reduce the communication time of distributed data-parallel DNN training. We further derive the required number of wavelengths, the minimum number of communication steps, and the communication time for the all-reduce operation on optical interconnect. The constraint of insertion loss is also considered in our analysis. Simulation results show that the communication time of all-reduce by WRHT is reduced by 80.81%, 64.36%, and 82.12%, respectively, compared with three traditional all-reduce algorithms according to our simulation results of an optical interconnect system. Our results also show that WRHT can reduce the communication time of all-reduce operation by 92.42% and 91.31% compared to two existing all-reduce algorithms running in the electrical interconnect system.


翻译:通信效率在加快深神经网络(DNN)的分布式培训方面起着重要作用。 全部减少是减少分布式DNN培训中模型参数的关键通信原始方法。 大部分现有的全部减少算法是为传统电路连接系统设计的,由于电路连接系统的数据宽度较低,无法满足大型DNN培训的传播要求。 连接电路的一个有希望的替代办法是光学连接,这可以提供高带宽、低传输延迟和低电费。 我们提出在分布式DNN培训中实施全面减少电路连接操作的有效办法。 WRHT(WRHT)可以利用传统电路连接系统(WDM(Wastle Division plexxing))的优势,以减少分布式数据连接系统分布式培训的通信时间。 我们进一步得出所需的波长数、最小通信步骤和全速减少光电路连接操作的通信时间。 我们还在分析中考虑了插入损失的制约因素。 模拟结果显示,通过传统光电路连接系统(WRHRHT) 将全部通信时间减少两次递减为64. 的通信时间, 和整个内部连通速度缩小了81%, 缩小了我们所有通信连接为82%。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
114+阅读 · 2022年4月21日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
32+阅读 · 2021年11月30日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
43+阅读 · 2019年12月20日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员