We propose a homotopy sampling procedure, loosely based on importance sampling. Starting from a known probability distribution, the homotopy procedure generates the unknown normalization of a target distribution. In the context of stationary distributions that are associated with physical systems the method is an alternative way to estimate an unknown microcanonical ensemble. The process is iterative and also generates samples from the target distribution. In practice, the homotopy procedure does not circumvent using sample averages in the estimation of the normalization constant. The error in the procedure depends on the errors incurred in sample averaging and the number of stages used in the computational implementation of the process. However, we show that it is possible to exchange the number of homotopy stages and the total number of samples needed at each stage in order to enhance the computational efficiency of the implemented algorithm. Estimates of the error as a function of stages and sample averages are derived. These could guide computational efficiency decisions on how the calculation would be mapped to a given computer architecture. Consideration is given to how the procedure can be adapted to Bayesian estimation problems, both stationary and non-stationary. Emphasis is placed on the non-stationary problems, and in particular, on a sequential estimation technique known as particle filtering. It is shown that a modification of the particle filter framework to include the homotopy process can improve the computational robustness of particle filters. The homotopy process can ameliorate particle filter collapse, a common challenge to using particle filters when the sample dimension is small compared with the state space dimensions.


翻译:从已知的概率分布开始,单调程序产生目标分布的不为人知的正常化。在与物理系统相关的固定分布方面,方法是估算未知微色共性的一种替代方法。这一过程是迭代的,并且从目标分布中生成样本。在实践中,单调程序并不绕过在估计正常化常数时使用样本平均值的计算效率决定。程序中的错误取决于抽样平均发生的错误和计算过程实施过程中使用的各个阶段的数目。然而,我们表明,可以交换同质阶段的数目和每个阶段所需的样本总数,以提高所执行的算法的计算效率。可以得出作为阶段和样本平均分布函数函数的误差估计。这些方法可以指导计算效率决定如何将计算结果映射到给定的计算机结构。可以考虑该程序如何适应贝伊斯平均的估算问题,无论是固定的还是非静止的。我们表明,在每一阶段交换同质的同质阶段所需的样本总数是可能的。在使用不固定的更替性筛选过程中,对普通的内压性分析过程进行了分析。在使用一个普通的稳定性分析过程中,可以显示一种不固定的稳定性的稳定性分析过程。在一种普通的精确的研算方法上,它可以显示一种对质的精确的精确的精确的精度的精确的精度,可以显示。它的精度的精确的精度,它可以用来的精确性,在使用一种对等的精确的精确的研的研。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adaptive Sequential Design for a Single Time-Series
Arxiv
0+阅读 · 2021年7月1日
Higher Order Targeted Maximum Likelihood Estimation
Arxiv
0+阅读 · 2021年6月30日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员