In multivariate extreme value analysis, the estimation of the dependence structure in extremes is a challenging task, especially in the context of high-dimensional data. Therefore, a common approach is to reduce the model dimension by considering only the directions in which extreme values occur. In this paper, we use the concept of sparse regular variation recently introduced by Meyer and Wintenberger (2021) to derive information criteria for the number of directions in which extreme events occur, such as a Bayesian information criterion (BIC), a mean-squared error-based information criterion (MSEIC), and a quasi-Akaike information criterion (QAIC) based on the Gaussian likelihood function. As is typical in extreme value analysis, a challenging task is the choice of the number $k_n$ of observations used for the estimation. Therefore, for all information criteria, we present a two-step procedure to estimate both the number of directions of extremes and an optimal choice of $k_n$. We prove that the AIC of Meyer and Wintenberger (2023) and the MSEIC are inconsistent information criteria for the number of extreme directions whereas the BIC and the QAIC are consistent information criteria. Finally, the performance of the different information criteria is compared in a simulation study and applied on wind speed data.
翻译:暂无翻译