The goal of this paper is to formulate a general framework for fluid motion estimation using a constraint-based refinement approach. We demonstrate that for a particular choice of the constraint, our results closely approximate the continuity equation based fluid flow. This closeness is theoretically justified through a modified augmented Lagrangian method and validated numerically. Further, along with the continuity constraint, our model can include other geometric constraints as demonstrated. The mathematical well-posedness is studied in the Hilbert space setting. Moreover, a special feature of our system is the possibility of a diagonalization by the Cauchy-Riemann operator and transforming it to a diffusion process on the curl and the divergence of the flow. Using the theory of semigroups on the decoupled system, we show that our approach preserves the spatial characteristics of the divergence and the vorticities. We perform several numerical experiments and show the results on different datasets.
翻译:本文的目的是利用基于限制的完善方法,为流体运动估计制定总体框架。我们证明,对于特定的限制选择,我们的结果接近基于连续性方程的流体流。这种接近在理论上通过经修改的拉格朗加亚增强法和数字验证是合理的。此外,除了连续性限制外,我们的模型还可以包括所显示的其他几何限制。在希尔伯特空间设置中研究数学的稳健性。此外,我们的系统的一个特征是Cauchy-Riemann操作者进行分解的可能性,并把它转变成曲线上的传播过程和流体的偏差。我们利用分解系统的半组理论,表明我们的方法保存了差异和变异的空间特征。我们进行了数学实验,并展示了不同数据集的结果。