项目名称: 超临界二氧化碳中氟烯烃单体RAFT可控聚合及其制备氟烯烃聚合物微球的研究

项目编号: No.21304037

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 徐安厚

作者单位: 济南大学

项目金额: 25万元

中文摘要: 本项目结合绿色发展的要求,以超临界二氧化碳为溶剂,设计合成不同结构的黄原酸酯链转移剂进行氟烯烃单体RAFT可控聚合的调控研究,并利用聚氟烯烃链段的原位分散稳定作用制备结构可控的氟烯烃聚合物微球。通过不同结构链转移剂对氟烯烃单体的RAFT可控聚合调控能力的研究,揭示RAFT链转移剂中离去和活化基团结构对氟烯烃RAFT聚合的影响规律,为氟烯烃单体RAFT可控聚合制备精确结构的含氟聚合物提供实验基础和理论指导。在超临界二氧化碳介质中,通过氟烯烃单体分散聚合和聚氟烯烃链段的原位自分散稳定代替分散稳定剂制备高纯度、结构可控的氟烯烃聚合物微球,通过深入分析超临界二氧化碳中的自分散稳定机制,明确嵌段聚合物的组成和结构,以及聚合条件与聚合物微球大小和形貌的关系,充分认识超临界二氧化碳溶剂在自分散稳定行为中的作用,为构建新型简单制备不同聚氟烯烃微球提供基础理论支撑和新的方法。

中文关键词: 可控自由基聚合;超临界二氧化碳;含氟聚合物;嵌段共聚物;聚合物微球

英文摘要: In this research, we will carry out the RAFT polymerizations of fluoroolefins with our synthesized RAFT reagents, and prepare fluorinated polymeric microspheres with the in-stiu dispersion of polyfluoroolefins segments in supercritical carbon dioxide. The relationships between the structure of resultant RAFT reagents and the RAFT controlled polymerization of different fluoroolefins as well as the effect of the leaving and activating groups in RAFT reagents on RAFT polymerizations are attempted to clarify, which will provide experimental and theoretical guide for the preparation of well-defined fluoropolymers. Fluorinated polymeric microspheres will be obtained in the in-stiu RAFT dispersion polymerization of fluoroolefins in supercritical carbon dioxide. Through in-depth analysis of above in-stiu dispersion technology mechanism, the impacts of the composition and structure of block copolymers as well as polymerization conditions on the size and appearance of polymeric particles will be carefully studied, and the action of supercritical carbon dioxide solvent in in-stiu dispersion polymerization will also be well understood. These will provide theoretical supports and new approaches for the preparation of fluorinated polymeric microspheres.

英文关键词: controlled radical polymerization;supercritical carbon dioxide;fluoropolymer;block copolymer;polymer particles

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
133+阅读 · 2021年9月16日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
20+阅读 · 2021年5月1日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
专知会员服务
28+阅读 · 2020年8月8日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
美团到店综合知识图谱的构建与应用
专知
1+阅读 · 2022年3月28日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
133+阅读 · 2021年9月16日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
20+阅读 · 2021年5月1日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
专知会员服务
28+阅读 · 2020年8月8日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员