The numerical approximation of posterior expected quantities of interest is considered. A novel control variate technique is proposed for post-processing of Markov chain Monte Carlo output, based both on Stein's method and an approach to numerical integration due to Sard. The resulting estimators are proven to be polynomially exact in the Gaussian context, while empirical results suggest the estimators approximate a Gaussian cubature method near the Bernstein-von-Mises limit. The main theoretical result establishes a bias-correction property in settings where the Markov chain does not leave the posterior invariant. Empirical results are presented across a selection of Bayesian inference tasks. All methods used in this paper are available in the R package ZVCV.
翻译:考虑了后期预期利益数量的数字近似值。根据施泰因的方法和由于萨德而采用的数字集成方法,为马可夫链Monte Carlo输出的后处理提出了一种新的控制变异技术。由此得出的估计值在高斯语背景中被证明是多元的,而实证结果表明,估计值接近Bernstein-von-Mises限制值的高萨幼稚方法。主要理论结果表明,在马尔科夫链不离开后继体的环境下,存在偏差校正属性。在选择贝叶斯语推论任务时,都提供了经验性结果。本文使用的所有方法都载于R 包 ZVCV中。