Recent studies suggest that early stages of diabetic retinopathy (DR) can be diagnosed by monitoring vascular changes in the deep vascular complex. In this work, we investigate a novel method for automated DR grading based on optical coherence tomography angiography (OCTA) images. Our work combines OCTA scans with their vessel segmentations, which then serve as inputs to task specific networks for lesion segmentation, image quality assessment and DR grading. For this, we generate synthetic OCTA images to train a segmentation network that can be directly applied on real OCTA data. We test our approach on MICCAI 2022's DR analysis challenge (DRAC). In our experiments, the proposed method performs equally well as the baseline model.
翻译:最近的研究显示,通过监测深血管综合体的血管变化,可以诊断出糖尿病视网膜病(DR)的早期阶段。在这项工作中,我们研究了一种基于光学一致性断层摄影成像学(OCTA)图像的自动DR分级新颖方法。我们的工作将OCTA扫描与船只的分解结合起来,然后作为任务任务具体网络的投入,用于损害分解、图像质量评估和DR分级。为此,我们制作了合成OCTA图像,以训练一个可直接应用于OCTA真实数据的分层网络。我们测试了我们对MICCAI 2022的DR分析挑战(DRAC)的方法。 在我们的实验中,拟议方法与基线模型一样运作。