项目名称: 基于反应机理的肽酰基精氨酸脱亚胺酶4(PAD4)抑制剂的虚拟筛选

项目编号: No.21203101

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理化学

项目作者: 李冬梅

作者单位: 南开大学

项目金额: 22万元

中文摘要: 肽酰基精氨酸脱亚胺酶4(PAD4)是一种转录后修饰酶。它催化肽链中的精氨酸残基脱去亚胺基,生成瓜氨酸残基。PAD4活性失调与类风湿性关节炎(RA)的发生与发展有关,PAD4 被认为是开发RA 治疗药物的一种新靶酶。另外,PAD4能够使转录调控子(如p300、组蛋白H2A、组蛋白H3、组蛋白H4)脱去亚胺基,在基因调控中也起着重要的作用。因此,设计PAD4的抑制剂具有非常重要的意义。为了合理地设计PAD4的抑制剂,首先要理解PAD4被抑制的机理。我们拟采用量子力学和分子力学相结合的方法,研究氟脒抑制PAD4的机理,揭示其决速步骤的过渡态结构。另外,我们将通过分子动力学模拟,并通过聚类分析,找到过渡态和反应复合物时的PAD4的代表性构象。然后,分别以过渡态和反应复合物时的PAD4的代表性构象为基础,构建药效团、分子对接,进行虚拟筛选。最后通过活性测试,找到对PAD4具有抑制活性的化合物。

中文关键词: QM/MM计算;过渡态;分子动力学模拟;药效团;分子对接

英文摘要: Peptidylarginine deiminase 4 (PAD4) is a kind of post-translational modifying enzyme. It catalyzes the hydrolysis of peptidylarginine residue to form citrulline residue and ammonia. Dysregulation of PAD4 is linked to the onset and progression of rheumatoid arthritis (RA), PAD4 represents a new therapeutic target for RA. In addition, PAD4 plays a pivotal role in gene regulation by deiminating multiple transcriptional regulators, such as p300, and histones H2A, H3, and H4. Thus, there is significant interest in developing inhibitors of PAD4. For rational design of PAD4 inhibitors, it is paramountly important to understand the detailed mechanism concerning how the enzyme is inhibited. We will calculate the mechanism of PAD4 inhibition by F-amidine using the quantum mechanical/molecular mechanical method to reveal the rate-determining transition state. In addition, we will perform molecular dynamic simulations to get multiple conformational states of PAD4 in the transition state and the reactant comlex. Subsequently, we will do pharmacophore modelling, molecular docking and virtual screening on the basis of multiple confomational states of PAD4. Finally, we will carry out PAD4 inhibitory assay for the selected conpounds from virtual screening hit list and get potent PAD4 inhibitors.

英文关键词: QM/MM calculation;transition state;molecular dynamics simulation;pharmacophore;molecular docking

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
基于文档的对话技术研究
专知会员服务
19+阅读 · 2022年2月20日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
133+阅读 · 2021年9月20日
专知会员服务
29+阅读 · 2021年8月16日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
24+阅读 · 2020年2月23日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
NTD的深度研究,为厘清新冠病毒机理提供新方向!
微软研究院AI头条
0+阅读 · 2021年11月23日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
小贴士
相关主题
相关VIP内容
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
基于文档的对话技术研究
专知会员服务
19+阅读 · 2022年2月20日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
133+阅读 · 2021年9月20日
专知会员服务
29+阅读 · 2021年8月16日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
24+阅读 · 2020年2月23日
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员