We analyse adversarial bandit convex optimisation with an adversary that is restricted to playing functions of the form $f(x) = g(\langle x, \theta\rangle)$ for convex $g : \mathbb R \to \mathbb R$ and $\theta \in \mathbb R^d$. We provide a short information-theoretic proof that the minimax regret is at most $O(d\sqrt{n} \log(\operatorname{diam}\mathcal K))$ where $n$ is the number of interactions, $d$ the dimension and $\operatorname{diam}(\mathcal K)$ is the diameter of the constraint set. Hence, this class of functions is at most logarithmically harder than the linear case.


翻译:我们用一个对手来分析对抗性土匪的优化, 该对手仅限于为 convex $g:\mathbb R\to\mathbb R$ 和 $\theta\ in\mathbb R ⁇ d$。 我们提供了简短的信息- 理论证明, 迷你马克思的悔恨最多为 $O( d\ sqrt{n}\log( operatorname{ diam\ mathcal K) $, 其中, $n是互动的数量, $d$ 维度和 $\ opatorname{diam} (\mathcal K) 是约束设置的直径。 因此, 这个函数的类别比线性案例要困难得多 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
The Max k-Cut Game: On Stable Optimal Colorings
Arxiv
0+阅读 · 2021年7月21日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员