Elucidating and accurately predicting the druggability and bioactivities of molecules plays a pivotal role in drug design and discovery and remains an open challenge. Recently, graph neural networks (GNN) have made remarkable advancements in graph-based molecular property prediction. However, current graph-based deep learning methods neglect the hierarchical information of molecules and the relationships between feature channels. In this study, we propose a well-designed hierarchical informative graph neural networks framework (termed HiGNN) for predicting molecular property by utilizing a co-representation learning of molecular graphs and chemically synthesizable BRICS fragments. Furthermore, a plug-and-play feature-wise attention block is first designed in HiGNN architecture to adaptively recalibrate atomic features after the message passing phase. Extensive experiments demonstrate that HiGNN achieves state-of-the-art predictive performance on many challenging drug discovery-associated benchmark datasets. In addition, we devise a molecule-fragment similarity mechanism to comprehensively investigate the interpretability of HiGNN model at the subgraph level, indicating that HiGNN as a powerful deep learning tool can help chemists and pharmacists identify the key components of molecules for designing better molecules with desired properties or functions. The source code is publicly available at https://github.com/idruglab/hignn.
翻译:对分子的可药性和生物活性进行精准和准确预测的分子的可药性和生物活性在药物设计和发现方面发挥着关键作用,这仍然是一个公开的挑战。最近,图形神经网络(GNN)在基于图形的分子属性预测方面取得了显著的进步。然而,目前基于图形的深层次学习方法忽视了分子的等级信息以及特征渠道之间的关系。在本研究中,我们提出了一个设计完善的等级级信息图形神经网络框架(以HIGNN为主),通过利用分子图和可化学合成的BRICS碎片的共同代表学习来预测分子属性。此外,在HGNNN结构中,首先设计了一个插和播放功能关注区,以便在信息通过阶段后对原子特性进行适应性调整。广泛的实验表明,HGNNN能够在许多具有挑战性的药物发现相关基准数据集上取得最先进的预测性能。此外,我们设计了一个分子分裂性机制,以全面调查在子图层一级对HGNNN模型模型的可解释性能,表明HGNNNT分子分子的分子分子分子分子/分子分子模型是公共学习的更好来源。