Supervised-learning based person re-identification (re-id) require a large amount of manual labeled data, which is not applicable in practical re-id deployment. In this work, we propose a Support Pair Active Learning (SPAL) framework to lower the manual labeling cost for large-scale person reidentification. The support pairs can provide the most informative relationships and support the discriminative feature learning. Specifically, we firstly design a dual uncertainty selection strategy to iteratively discover support pairs and require human annotations. Afterwards, we introduce a constrained clustering algorithm to propagate the relationships of labeled support pairs to other unlabeled samples. Moreover, a hybrid learning strategy consisting of an unsupervised contrastive loss and a supervised support pair loss is proposed to learn the discriminative re-id feature representation. The proposed overall framework can effectively lower the labeling cost by mining and leveraging the critical support pairs. Extensive experiments demonstrate the superiority of the proposed method over state-of-the-art active learning methods on large-scale person re-id benchmarks.


翻译:在这项工作中,我们提议了一个支持性对称学习框架,以降低大规模个人再定位的人工标签成本。支持性对口可以提供最丰富的信息关系并支持歧视性特征学习。具体地说,我们首先设计了双重的不确定性选择战略,以迭接发现支持配对并需要人的说明。随后,我们引入了有限的组合算法,以传播标签式支持配对与其他未加标签样本的关系。此外,我们提议采用混合学习战略,包括一种未经监督的对比性损失和受监督的支持性对口损失,以学习歧视性的重新定位特征代表。拟议的总体框架可以通过采矿和利用关键支持配对有效地降低标签成本。广泛的实验表明拟议方法优于关于大规模个人再定位基准的州级积极学习方法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
Arxiv
13+阅读 · 2021年7月20日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员