Deep reinforcement learning has achieved great success in various fields with its super decision-making ability. However, the policy learning process requires a large amount of training time, causing energy consumption. Inspired by the redundancy of neural networks, we propose a lightweight parallel training framework based on neural network compression, AcceRL, to accelerate the policy learning while ensuring policy quality. Specifically, AcceRL speeds up the experience collection by flexibly combining various neural network compression methods. Overall, the AcceRL consists of five components, namely Actor, Learner, Compressor, Corrector, and Monitor. The Actor uses the Compressor to compress the Learner's policy network to interact with the environment. And the generated experiences are transformed by the Corrector with Off-Policy methods, such as V-trace, Retrace and so on. Then the corrected experiences are feed to the Learner for policy learning. We believe this is the first general reinforcement learning framework that incorporates multiple neural network compression techniques. Extensive experiments conducted in gym show that the AcceRL reduces the time cost of the actor by about 2.0 X to 4.13 X compared to the traditional methods. Furthermore, the AcceRL reduces the whole training time by about 29.8% to 40.3% compared to the traditional methods while keeps the same policy quality.


翻译:深度强化学习在多个领域取得了巨大成功,具有超强的决策能力。然而,政策学习过程需要大量培训时间,从而导致能源消耗。在神经网络冗余的启发下,我们提议了一个基于神经网络压缩的轻量平行培训框架,以加速政策学习,同时确保政策质量。具体地说,ACCERL通过灵活地结合各种神经网络压缩方法,加快了经验收集速度。总体而言,ACCERL由五个组成部分组成,即Acor、Lander、Compressor、Compressor、Recroor和Monitor。Acer使用压缩器压缩学习者的政策网络与环境互动。在神经网络压缩的启发下,我们提出了一个基于神经网络压缩、AcceRL的轻量的平行培训框架。所产生的经验由校正者以非政策方法(如V-trace、Retrace等)来转变。随后,校正的经验被反馈给Ler用于政策学习。我们认为,这是第一个包含多个神经网络压缩技术的总体强化学习框架。在健身房中进行的广泛实验显示,AceRL降低了演员的时间成本,大约为40.3%,而传统的Arc将传统的A.13比传统方法降低整个Axxxxxxxxxx。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月26日
Arxiv
21+阅读 · 2022年11月8日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员