We discuss two approaches to solving the parametric (or stochastic) eigenvalue problem. One of them uses a Taylor expansion and the other a Chebyshev expansion. The parametric eigenvalue problem assumes that the matrix $A$ depends on a parameter $\mu$, where $\mu$ might be a random variable. Consequently, the eigenvalues and eigenvectors are also functions of $\mu$. We compute a Taylor approximation of these functions about $\mu_{0}$ by iteratively computing the Taylor coefficients. The complexity of this approach is $O(n^{3})$ for all eigenpairs, if the derivatives of $A(\mu)$ at $\mu_{0}$ are given. The Chebyshev expansion works similarly. We first find an initial approximation iteratively which we then refine with Newton's method. This second method is more expensive but provides a good approximation over the whole interval of the expansion instead around a single point. We present numerical experiments confirming the complexity and demonstrating that the approaches are capable of tracking eigenvalues at intersection points. Further experiments shed light on the limitations of the Taylor expansion approach with respect to the distance from the expansion point $\mu_{0}$.


翻译:我们讨论两种方法来解决参数(或随机值)值问题。 其中一种方法使用泰勒扩张,另一种方法使用Chebyshev扩张。 参数乙值问题假定矩阵$A$取决于一个参数$\mu$, 其中美元可能是一个随机变量。 因此, egen值和源值也是一种美元函数。 我们通过迭接计算泰勒系数来计算这些函数的Taylor近似值大约$\mu ⁇ 0美元。 这种方法的复杂性是所有egenpairs的O( n ⁇ 3})$。 如果给出了美元( mu) $的衍生物, 则该矩阵值取决于一个参数$\mu$, 美元可能是一个随机变量。 Chebyshev 扩张也同样地工作。 我们首先发现一个初始近似值, 然后用牛顿的方法来精细化。 第二种方法比较昂贵, 但它在扩展整个时间间隔上提供了一个很好的近似值。 我们用数字实验来证实其复杂性, 并证明这些方法能够追踪从 $\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\的交叉点的远值的扩展的扩张限制。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员