We first consider the problem of approximating a few eigenvalues of a rational matrix-valued function closest to a prescribed target. It is assumed that the proper rational part of the rational matrix-valued function is expressed in the transfer function form $H(s) = C (sI - A)^{-1} B$, where the middle factor is large, whereas the number of rows of $C$ and the number of columns of $B$ are equal and small. We propose a subspace framework that performs two-sided or one-sided projections on the state-space representation of $H(\cdot)$, commonly employed in model reduction and giving rise to a reduced transfer function. At every iteration, the projection subspaces are expanded to attain Hermite interpolation conditions at the eigenvalues of the reduced transfer function closest to the target, which in turn leads to a new reduced transfer function. We prove in theory that, when a sequence of eigenvalues of the reduced transfer functions converges to an eigenvalue of the full problem, it converges at least at a quadratic rate. In the second part, we extend the proposed framework to locate the eigenvalues of a general square large-scale nonlinear meromorphic matrix-valued function $T(\cdot)$, where we exploit a representation $\mathcal{R}(s) = C(s) A(s)^{-1} B(s) - D(s)$ defined in terms of the block components of $T(\cdot)$. The numerical experiments illustrate that the proposed framework is reliable in locating a few eigenvalues closest to the target point, and that, with respect to runtime, it is competitive to established methods for nonlinear eigenvalue problems.


翻译:我们首先考虑一个近似于一个指定目标的合理矩阵值函数的偏移值问题。 假设合理的矩阵值函数的合理合理部分表现在传输函数表$H = C( SI - A) ⁇ -1} B$, 其中中间系数较大, 而行数 $C 和 $B 列数是相等和小的。 我们建议一个子空间框架, 对州- 空间代表值$H( cdot) 进行双向或单向的预测, 通常用于模式块的减少, 并导致转移函数的减少。 在每次循环函数中, 投影子空间会扩大以达到与目标最接近的 Hermite 内部值, 而减少的转移函数的行数和列数则导致新的转移功能的减少。 我们从理论上证明, 当调低的转移函数的顺序( igenvalue) 与全方位值为$( $( R) 美元, 通常在模型中, 最接近的最接近的值值值值值值值值值为 B级值值值值框架。 在平方形框架中, 将它以最低值表示为平方值的数值 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员