This paper tackles automated categorization of Age-related Macular Degeneration (AMD), a common macular disease among people over 50. Previous research efforts mainly focus on AMD categorization with a single-modal input, let it be a color fundus photograph (CFP) or an OCT B-scan image. By contrast, we consider AMD categorization given a multi-modal input, a direction that is clinically meaningful yet mostly unexplored. Contrary to the prior art that takes a traditional approach of feature extraction plus classifier training that cannot be jointly optimized, we opt for end-to-end multi-modal Convolutional Neural Networks (MM-CNN). Our MM-CNN is instantiated by a two-stream CNN, with spatially-invariant fusion to combine information from the CFP and OCT streams. In order to visually interpret the contribution of the individual modalities to the final prediction, we extend the class activation mapping (CAM) technique to the multi-modal scenario. For effective training of MM-CNN, we develop two data augmentation methods. One is GAN-based CFP/OCT image synthesis, with our novel use of CAMs as conditional input of a high-resolution image-to-image translation GAN. The other method is Loose Pairing, which pairs a CFP image and an OCT image on the basis of their classes instead of eye identities. Experiments on a clinical dataset consisting of 1,094 CFP images and 1,289 OCT images acquired from 1,093 distinct eyes show that the proposed solution obtains better F1 and Accuracy than multiple baselines for multi-modal AMD categorization. Code and data are available at https://github.com/li-xirong/mmc-amd.
翻译:本文处理与年龄有关的巨型变形(AMD)的自动化分类,这是50岁以上人群中常见的骨骼疾病,以往的研究工作主要侧重于包含单一毫米输入的AMD分类,让它成为彩色基金照片(CFP)或OCT B-scan 图像。相比之下,我们认为AMD分类是一种多模式输入,这是一个具有临床意义但大多尚未探索的方向。与以前采用特征提取传统方法加上无法共同优化的分类培训的艺术相反,我们选择了终端到终端多式神经神经网络(MM-CNN)。我们的MM-CNN由双流CNM(CFFP)或OCT流中的信息结合。为了对个人模式对最终预测的贡献进行直观解释,我们将级激活绘图技术(CAM)技术推广到多模式假设中。为了对MM-CN的有效培训,我们开发了两种数据增强性多式的多式变形图像(MM-CNN) (MMM-CN) 网络(M-CNN) 。我们的MM-CN(M-C-CN) 和LA-C-C-C-ALALAD) 图像(OD) 的快速解解算法(GAN) 数据,这是GAN-C-C-C-C-C-C-C-C-C-A-A-A-A-O-O-O-C-O-A-A) 的快速化的快速化数据, 的快速化数据解算法的快速化数据,这是一种新的C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-OFMD-C-C-C-C-C-C-C-OD-C-C-C-C-C-C-C-C-C-C-C-O-C-C-C-C-C-C-C-C-C-C-C-C-C-C-O-C-C-C-C-C-C-C-O-C-O-C-O-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-