Anomaly detection is the process of identifying unexpected events or ab-normalities in data, and it has been applied in many different areas such as system monitoring, fraud detection, healthcare, intrusion detection, etc. Providing real-time, lightweight, and proactive anomaly detection for time series with neither human intervention nor domain knowledge could be highly valuable since it reduces human effort and enables appropriate countermeasures to be undertaken before a disastrous event occurs. To our knowledge, RePAD (Real-time Proactive Anomaly Detection algorithm) is a generic approach with all above-mentioned features. To achieve real-time and lightweight detection, RePAD utilizes Long Short-Term Memory (LSTM) to detect whether or not each upcoming data point is anomalous based on short-term historical data points. However, it is unclear that how different amounts of historical data points affect the performance of RePAD. Therefore, in this paper, we investigate the impact of different amounts of historical data on RePAD by introducing a set of performance metrics that cover novel detection accuracy measures, time efficiency, readiness, and resource consumption, etc. Empirical experiments based on real-world time series datasets are conducted to evaluate RePAD in different scenarios, and the experimental results are presented and discussed.


翻译:异常探测是查明数据中意外事件或异常现象的过程,已经应用于许多不同领域,如系统监测、欺诈检测、医疗、入侵探测等,例如系统监测、欺诈检测、保健、入侵探测等。 提供实时、轻量和主动异常探测时间序列,而人类干预和领域知识都没有,因此可能非常宝贵,因为它会减少人类的努力,并能够在灾难性事件发生之前采取适当的对策。据我们所知,RePAD(实时主动异常探测算法)是具有上述所有特征的通用方法。为了实现实时和轻度检测,REPAD利用长期短期内存(LSTM)来检测每个即将到来的数据点是否基于短期历史数据点的异常。然而,尚不清楚的是,不同数量的历史数据点如何影响ResPAD的运行。因此,在本文件中,我们调查不同数量的历史数据对REPAD的影响,方法是采用一套包括新发现的准确度度、时间效率、准备和资源消耗等的性能指标。根据真实和已讨论过的实验时间序列中的不同情况,对现实和实验结果进行评估。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月6日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2021年3月3日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
12+阅读 · 2019年4月9日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员