Principled nonparametric tests for regression curvature in $\mathbb{R}^{d}$ are often statistically and computationally challenging. This paper introduces the stratified incomplete local simplex (SILS) tests for joint concavity of nonparametric multiple regression. The SILS tests with suitable bootstrap calibration are shown to achieve simultaneous guarantees on dimension-free computational complexity, polynomial decay of the uniform error-in-size, and power consistency for general (global and local) alternatives. To establish these results, a general theory for incomplete $U$-processes with stratified random sparse weights is developed. Novel technical ingredients include maximal inequalities for the supremum of multiple incomplete $U$-processes.
翻译:$\mathbb{R ⁇ d}$的回归曲率的有原则的非参数性测试往往在统计上和计算上都是具有挑战性的。本文介绍了分层不完整的局部简单(SILS)测试,用于非参数多重回归的共同精密性。用合适的靴带校准进行SSILS测试,可以同时保证无尺寸计算复杂性、统一误差大小的多元衰减和通用(全球和地方)替代方法的功率一致性。为了确定这些结果,将开发出一个总理论,用于不完全的美元工艺,并配有随机稀疏重量。新颖的技术成分包括多个不完整的美元工艺的峰值的最大不平等。