Detecting commuting patterns or migration patterns in movement data is an important problem in computational movement analysis. Given a trajectory, or set of trajectories, this corresponds to clustering similar subtrajectories. We study subtrajectory clustering under the continuous and discrete Fr\'echet distances. The most relevant theoretical result is by Buchin et al. (2011). They provide, in the continuous case, an $O(n^5)$ time algorithm and a 3SUM-hardness lower bound, and in the discrete case, an $O(n^3)$ time algorithm. We show, in the continuous case, an $O(n^3 \log^2 n)$ time algorithm and a 3OV-hardness lower bound, and in the discrete case, an $O(n^2 \log n)$ time algorithm and a quadratic lower bound. Our bounds are almost tight unless SETH fails.
翻译:检测移动数据中的通勤模式或迁移模式是计算运动分析中的一个重要问题。根据轨迹或轨迹组群,这相当于类似的子轨迹组群。我们在连续和离散Fr\'echet距离下研究子轨群集。最相关的理论结果是Buchin等人(2011年),在连续的情况下,它们提供了美元(n)5美元的时间算法和3SUM-硬度下限,在离散的情况下,则提供了美元(n)3美元的时间算法。在连续的情况下,我们显示的是美元(n)3\log=2n)美元的时间算法和3OVD-硬度下限,而在离散的情况下,则提供了美元(n)2\log n)美元的时间算法和低限。除非SETH失败,我们的界限几乎很紧。