Affine phase retrieval is the problem of recovering signals from the magnitude-only measurements with a priori information. In this paper, we use the $\ell_1$ minimization to exploit the sparsity of signals for affine phase retrieval, showing that $O(k\log(en/k))$ Gaussian random measurements are sufficient to recover all $k$-sparse signals by solving a natural $\ell_1$ minimization program, where $n$ is the dimension of signals. For the case where measurements are corrupted by noises, the reconstruction error bounds are given for both real-valued and complex-valued signals. Our results demonstrate that the natural $\ell_1$ minimization program for affine phase retrieval is stable.
翻译:Affinsian 阶段回收是用先验信息从量度测量中恢复信号的问题。 在本文中,我们使用 $\ ell_ 1$ 最小化 来利用信号的广度来进行 等离子阶段回收, 显示 $( k\ log( en/ k) ) 高西亚 随机测量足以通过解决自然 $\ ell_ 1美元最小化方案( 美元是信号的维度) 来恢复所有 k$ 零散的信号。 对于测量被噪音破坏的情况, 重建错误的界限是针对实际价值和复杂价值的信号。 我们的结果表明, 自然 $\ ell_ 1$ 最小化方案用于临界阶段回收是稳定的 。