We present Virtual Elastic Objects (VEOs): virtual objects that not only look like their real-world counterparts but also behave like them, even when subject to novel interactions. Achieving this presents multiple challenges: not only do objects have to be captured including the physical forces acting on them, then faithfully reconstructed and rendered, but also plausible material parameters found and simulated. To create VEOs, we built a multi-view capture system that captures objects under the influence of a compressed air stream. Building on recent advances in model-free, dynamic Neural Radiance Fields, we reconstruct the objects and corresponding deformation fields. We propose to use a differentiable, particle-based simulator to use these deformation fields to find representative material parameters, which enable us to run new simulations. To render simulated objects, we devise a method for integrating the simulation results with Neural Radiance Fields. The resulting method is applicable to a wide range of scenarios: it can handle objects composed of inhomogeneous material, with very different shapes, and it can simulate interactions with other virtual objects. We present our results using a newly collected dataset of 12 objects under a variety of force fields, which will be shared with the community.
翻译:我们展示了虚拟 Elastic 对象( VEOs ): 虚拟对象不仅看起来像真实世界的对等对象,而且行为也像它们一样, 即使有了新的互动。 实现这一点带来了多重挑战: 不仅必须捕获物体, 包括物理力量, 然后忠实地重组和完成, 而且还要找到和模拟可信的物质参数。 要创建 VEOs, 我们建立了一个多视图捕捉系统, 在压缩空气流的影响下捕捉物体。 以无模型、 动态神经光谱场的最新进展为基础, 我们重建对象和相应的变形场。 我们提议使用不同、 基于粒子的模拟器来使用这些变形场来找到具有代表性的材料参数, 从而使我们能够运行新的模拟对象。 为了模拟对象, 我们设计了一个将模拟结果与神经辐射场相结合的方法。 由此产生的方法适用于广泛的情景: 它可以处理由无色素材料构成的物体, 形状非常不同, 并且它可以模拟与其他虚拟对象的相互作用。 我们用新收集的12 对象群落下的新数据显示结果。