Agents learn about a changing state using private signals and their neighbors' past estimates of the state. We present a model in which Bayesian agents in equilibrium use neighbors' estimates simply by taking weighted sums with time-invariant weights. The dynamics thus parallel those of the tractable DeGroot model of learning in networks, but arise as an equilibrium outcome rather than a behavioral assumption. We examine whether information aggregation is nearly optimal as neighborhoods grow large. A key condition for this is signal diversity: each individual's neighbors have private signals that not only contain independent information, but also have sufficiently different distributions. Without signal diversity $\unicode{x2013}$ e.g., if private signals are i.i.d. $\unicode{x2013}$ learning is suboptimal in all networks and highly inefficient in some. Turning to social influence, we find it is much more sensitive to one's signal quality than to one's number of neighbors, in contrast to standard models with exogenous updating rules.
翻译:代理机构使用私人信号了解一个变化中的国家, 以及他们邻居过去对国家的估算。 我们展示了一个模式, Bayesian 代理机构在均衡中使用邻居的估计数时, 只需用时间变换权重来进行加权计算。 因此, 动态与可移植的 DeGroot 网络学习模式的动态平行, 但它作为一个平衡结果而不是行为假设产生。 我们检查信息汇总是否随着邻居群落的扩大而几乎是最佳的。 关键条件就是信号多样性: 每个邻居的私人信号不仅包含独立信息, 而且还有相当不同的分布。 例如, 如果没有信号多样性 $\ unicode{x2013} $, 例如, 如果私人信号在所有网络中都低于理想值, 而有些网络的学习效率非常低 。 转向社会影响, 我们发现对一个人的信号质量比对一个邻居的数量要敏感得多, 与带有外源更新规则的标准模式相比。