In this paper, we propose Hierarchical Federated Learning with Momentum Acceleration (HierMo), a three-tier worker-edge-cloud federated learning algorithm that applies momentum for training acceleration. Momentum is calculated and aggregated in the three tiers. We provide convergence analysis for HierMo, showing a convergence rate of O(1/T). In the analysis, we develop a new approach to characterize model aggregation, momentum aggregation, and their interactions. Based on this result, {we prove that HierMo achieves a tighter convergence upper bound compared with HierFAVG without momentum}. We also propose HierOPT, which optimizes the aggregation periods (worker-edge and edge-cloud aggregation periods) to minimize the loss given a limited training time.
翻译:在本文中,我们建议采用三层工人-尖端联合学习算法(Hiermo),即三层工人-尖端联合学习算法(Hiermo),采用加速培训的势头。三层计算并汇总了动力。我们向HierMo提供趋同分析,显示O(1/T)的趋同率。在分析中,我们开发了一种新的方法来描述模型集成、动力聚合及其相互作用。基于这一结果,我们证明Hiermo在与HierFAVG相比没有动力的高度趋同方面达到了更紧密的趋同。我们还提议HierOPT,在有限的培训时间里优化集合期(工人-前沿和边缘-宽宽度汇总期),以尽量减少损失。