We develop the notion of discrete degrees of freedom of a log-concave sequence and use it to prove that geometric distribution minimises R\'enyi entropy of order infinity under fixed variance, among all discrete log-concave random variables in $\mathbb{Z}$. We also show that the quantity $\mathbb{P}(X=\mathbb{E} X)$ is maximised, among all ultra-log-concave random variables with fixed integral mean, for a Poisson distribution.
翻译:暂无翻译