More adaptive controllers for robot manipulators are needed, which can deal with large model uncertainties. This paper presents a novel active inference controller (AIC) as an adaptive control scheme for industrial robots. This scheme is easily scalable to high degrees-of-freedom, and it maintains high performance even in the presence of large unmodeled dynamics. The proposed method is based on active inference, a promising neuroscientific theory of the brain, which describes a biologically plausible algorithm for perception and action. In this work, we formulate active inference from a control perspective, deriving a model-free control law which is less sensitive to unmodeled dynamics. The performance and the adaptive properties of the algorithm are compared to a state-of-the-art model reference adaptive controller (MRAC) in an experimental setup with a real 7-DOF robot arm. The results showed that the AIC outperformed the MRAC in terms of adaptability, providing a more general control law. This confirmed the relevance of active inference for robot control.
翻译:需要更能适应的机器人操控器控制器, 它可以处理巨大的模型不确定性。 本文展示了一种新的活性推论控制器( AIC ), 作为工业机器人的适应性控制器( AIC ) 。 这个方法很容易伸缩到高自由度, 即使在大型非模型动态的情况下, 也保持高性能。 提议的方法基于积极的推论, 一个很有希望的大脑神经科学理论, 描述一种生物上可行的感知和行动算法。 在这项工作中, 我们从控制角度来制定积极的推论, 产生一种对非模型动态不那么敏感的无模型控制法 。 算法的性能和适应性特性在实验性设置中与一个最先进的模型适应性控制器( MRAC ) 相比, 实际的 7 DOF 机器人臂。 结果表明, AIC 在适应性方面超越了MRC, 提供了更普遍的控制法 。 这证实了对机器人控制的积极推论的相关性 。