This paper addresses the challenge of grading visual features in lumbar spine MRI using Deep Learning. Such a method is essential for the automatic quantification of structural changes in the spine, which is valuable for understanding low back pain. Multiple recent studies investigated different architecture designs, and the most recent success has been attributed to the use of transformer architectures. In this work, we argue that with a well-tuned three-stage pipeline comprising semantic segmentation, localization, and classification, convolutional networks outperform the state-of-the-art approaches. We conducted an ablation study of the existing methods in a population cohort, and report performance generalization across various subgroups. Our code is publicly available to advance research on disc degeneration and low back pain.
翻译:本文讨论利用深层学习对脊椎磁共振成像进行分级的挑战。 这种方法对于脊椎结构变化的自动量化至关重要,这对于理解低背痛是有价值的。 多项最新研究调查了不同的建筑设计,最近的成功归功于变压器结构的使用。 在这项工作中,我们争论说,通过一个由语义分解、本地化和分类组成的三阶段管线,革命网络的形成超过了最新的方法。 我们对人口群中的现有方法进行了消化研究,并报告了各分组的性能普遍化。 我们的代码可以公开用于推进对磁盘退化和低背痛的研究。