The act of telling stories is a fundamental part of what it means to be human. This work introduces the concept of narrative information, which we define to be the overlap in information space between a story and the items that compose the story. Using contrastive learning methods, we show how modern artificial neural networks can be leveraged to distill stories and extract a representation of the narrative information. We then demonstrate how evolutionary algorithms can leverage this to extract a set of narrative templates and how these templates -- in tandem with a novel curve-fitting algorithm we introduce -- can reorder music albums to automatically induce stories in them. In the process of doing so, we give strong statistical evidence that these narrative information templates are present in existing albums. While we experiment only with music albums here, the premises of our work extend to any form of (largely) independent media.
翻译:讲述故事的行为是人类意义的一个基本部分。 这项工作引入了描述信息的概念, 我们定义了描述信息的概念, 也就是故事和故事内容构成项目在信息空间上的重叠。 我们使用对比式的学习方法, 展示如何利用现代人工神经网络来蒸馏故事和提取描述信息。 然后我们演示进化算法如何利用它来提取一套叙述模板, 以及这些模板如何与我们引入的新颖的、 符合曲线的算法一起, 重新排序音乐专辑来自动引出故事。 在这样做的过程中, 我们提供了有力的统计证据, 证明这些描述信息模板存在于现有的专辑中。 虽然我们仅在这里试验音乐专辑, 我们的工作基础扩大到任何形式的( 大范围的)独立媒体。