Combinations of neural ODEs with recurrent neural networks (RNN), like GRU-ODE-Bayes or ODE-RNN are well suited to model irregularly observed time series. While those models outperform existing discrete-time approaches, no theoretical guarantees for their predictive capabilities are available. Assuming that the irregularly-sampled time series data originates from a continuous stochastic process, the $L^2$-optimal online prediction is the conditional expectation given the currently available information. We introduce the neural jump ODE (NJ-ODE) that provides a data-driven approach to learn, continuously in time, the conditional expectation of a stochastic process. Our approach models the conditional expectation between two observations with a neural ODE and jumps whenever a new observation is made. We define a novel training framework, which allows us to prove theoretical guarantees for the first time. In particular, we show that the output of our model converges to the $L^2$-optimal prediction. We provide experiments showing that the theoretical results also hold empirically. Moreover, we experimentally show that our model outperforms the baselines in more complex learning tasks and give comparisons on real-world datasets.
翻译:神经元与恒定神经网络(RNN)(RNN)的合并,如GRU-ODE-Bayes或OD-RNN,完全适合模拟不规则观测的时间序列。这些模型优于现有的离散时间方法,但对其预测能力没有理论上的保证。假设不定期抽样的时间序列数据来自连续的随机分析过程,$L2美元的最佳在线预测是目前可获得的信息中有条件的预期。我们引入了神经跳跃 ODE(NJ-ODE),提供数据驱动方法,以持续地及时学习对随机过程的有条件期望。我们的方法模型是两种带有神经值的观测之间的有条件期望,每当进行新的观测时跳动。我们定义了一个新的培训框架,使我们能够证明第一次的理论保证。特别是,我们显示我们的模型输出与$L2美元-optimatimal的预测相匹配。我们提供的实验显示理论结果也是实验性的。此外,我们实验性地显示,我们用的是,我们模型来实验性地展示了我们复杂的数据基准。我们实验性地显示,我们用的是,我们用的是,我们模型来模拟来模拟来模拟来模拟来试验,在比较。