The accuracy of quantum dynamics simulation is usually measured by the error of the unitary evolution operator in the operator norm, which in turn depends on certain norm of the Hamiltonian. For unbounded operators, after suitable discretization, the norm of the Hamiltonian can be very large, which significantly increases the simulation cost. However, the operator norm measures the worst-case error of the quantum simulation, while practical simulation concerns the error with respect to a given initial vector at hand. We demonstrate that under suitable assumptions of the Hamiltonian and the initial vector, if the error is measured in terms of the vector norm, the computational cost may not increase at all as the norm of the Hamiltonian increases using Trotter type methods. In this sense, our result outperforms all previous error bounds in the quantum simulation literature. Our result extends that of [Jahnke, Lubich, BIT Numer. Math. 2000] to the time-dependent setting. We also clarify the existence and the importance of commutator scalings of Trotter and generalized Trotter methods for time-dependent Hamiltonian simulations.


翻译:量子动态模拟的准确性通常通过操作员规范中单一进化操作员的错误来衡量,而这反过来又取决于汉密尔顿人的某些规范。对于没有约束的操作员来说,在适当的离散后,汉密尔顿人的规范可能非常大,这大大增加了模拟成本。然而,操作员规范衡量量模拟中最坏的错误,而实际模拟则涉及特定初始矢量的错误。我们证明,在汉密尔顿人和初始矢量的适当假设下,如果以矢量规范来衡量错误,计算成本可能不会增加,作为汉密尔顿人使用Trotter类型方法增加的标准。从这个意义上讲,我们的结果超越了量模拟文献中所有以前的错误界限。我们的结果将[Jahnke、Lubich、BIT Numer. Math. 2000]的结果延伸到基于时间的设置。我们还澄清了Trotter和通用Trotter方法的存在和重要性,以及用于时间依赖的汉密尔顿模拟的通度方法的重要性。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月12日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员