Let $\Omega\subset\mathbb{R}^{n+1}$ have minimal Gaussian surface area among all sets satisfying $\Omega=-\Omega$ with fixed Gaussian volume. Let $A=A_{x}$ be the second fundamental form of $\partial\Omega$ at $x$, i.e. $A$ is the matrix of first order partial derivatives of the unit normal vector at $x\in\partial\Omega$. For any $x=(x_{1},\ldots,x_{n+1})\in\mathbb{R}^{n+1}$, let $\gamma_{n}(x)=(2\pi)^{-n/2}e^{-(x_{1}^{2}+\cdots+x_{n+1}^{2})/2}$. Let $\|A\|^{2}$ be the sum of the squares of the entries of $A$, and let $\|A\|_{2\to 2}$ denote the $\ell_{2}$ operator norm of $A$. It is shown that if $\Omega$ or $\Omega^{c}$ is convex, and if either $$\int_{\partial\Omega}(\|A_{x}\|^{2}-1)\gamma_{n}(x)dx>0\qquad\mbox{or}\qquad \int_{\partial\Omega}\Big(\|A_{x}\|^{2}-1+2\sup_{y\in\partial\Omega}\|A_{y}\|_{2\to 2}^{2}\Big)\gamma_{n}(x)dx<0,$$ then $\partial\Omega$ must be a round cylinder. That is, except for the case that the average value of $\|A\|^{2}$ is slightly less than $1$, we resolve the convex case of a question of Barthe from 2001. The main tool is the Colding-Minicozzi theory for Gaussian minimal surfaces, which studies eigenfunctions of the Ornstein-Uhlenbeck type operator $L= \Delta-\langle x,\nabla \rangle+\|A\|^{2}+1$ associated to the surface $\partial\Omega$. A key new ingredient is the use of a randomly chosen degree 2 polynomial in the second variation formula for the Gaussian surface area. Our actual results are a bit more general than the above statement. Also, some of our results hold without the assumption of convexity.


翻译:美元=A*x%x%x%x%x%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
Arxiv
0+阅读 · 2021年9月12日
Arxiv
0+阅读 · 2021年9月9日
Arxiv
0+阅读 · 2021年9月9日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
Top
微信扫码咨询专知VIP会员